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A numerical investigation of the influence of the angle of attack on a turbulent flow around a thick profile with
vortex cells at high Reynolds numbers has been carried out using the multiblock approach to solution of steady-
state two-dimensional Reynolds equations closed by means of Menter’s zonal model of shear-stress transfer.

Genesis and Objective of the Investigation. Continuing the series of recent works [1–6] devoted to numeri-
cal analysis of flow around a thick profile with built-in vortex cells, in the present work we refine and investigate in
detail the influence of the angle of attack, changing in a wide range, on a turbulent flow around a thick profile with
vortex cells at high Reynolds numbers. In this respect, our investigation develops the methods of control of flow
around an "E′ kip"-type aircraft of integral arrangement [7, 8].

As has been shown in [1–3], a flow around a two-dimensional model of the indicated apparatus representing
a thick (of the order of 45% in fractions of the chord) profile separates, and the character of flow around this body
with a bad aerodynamic shape does not change when passive vortex traps or vortex cells of elliptical shape are posi-
tioned on its back side. Intensification of the circulatory motion in the vortex cells by creating a momentum along
their generatrices or as a result of suction from the central bodies positioned in them [4–6] substantially changes the
structure of the flow to the extent that an unseparated regime of flow around the thick profile is established at a suf-
ficient level of the controlling action.

The preliminary numerical calculations [4, 6] carried out with the use of the high-Reynolds version of the
two-parameter dissipative model of turbulence made it possible for the most part to determine the qualitative regulari-
ties of flow around a thick profile and the behavior of its aerodynamic characteristics in a narrow range of angles of
attack (from −10 to 10o) at comparatively low Reynolds (Re) numbers (of the order of 104). In [6], the additional drag
which is due to the expenditure of energy for creation of suction from the central bodies and maintenance of a near-
unseparated regime of flow around a profile has been estimated.

In [5, 8], the application of Menter’s low-Reynolds zonal mode of shear-stress transfer made it possible to re-
fine and thoroughly analyze the influence of the Reynolds number on a turbulent flow around a thick profile and de-
termine the threshold value of the Re number after the attainment of which the lift coefficient remains practically
unchanged. This value of Re = 105 is used in the present investigation devoted to estimating the influence of the angle
of attack. It should be noted that in the present work, as in [5, 8], the velocity of suction from the central bodies is
assumed to be constant (5% of the velocity of the incoming flow).

One more circumstance is of discussional interest. In a number of works [9–11] concerning the problem under
consideration, including works carried out in the mid-1990s, analysis of flow around a wing profile (in a two-dimen-
sional definition) with an isolated vortex trapped in a cavity was carried out using asymptotic models like the
Batchelor model, which were oriented to modeling of circulation flows in cavities built into the contour of a body at
limiting high Reynolds numbers. In [11], this situation with a trapped vortex was interpreted as a vortex cell, and the
flow circulating in the cavity was intensified by rotating the circular cylinder positioned in it. It should be noted that
only configurations with a single cavity, i.e., with a single trapped vortex, were considered in this case.
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A weakness of this approach to modeling of flow around a profile (which, by the way, has little in common
with a thick profile) is the assumption that the flow around the investigated body is unseparated and a single large-
scale vortex exists within the vortex cell. This assumption seems to be unwarrantedly optimistic in light of the numeri-
cal investigations carried out in [1–6, 8], because it is practically impossible to prevent the formation of local
separation zones in the case of flow around configurations close to real ones.

One of the objectives of the present investigation is also comparative analysis of profiles having a different
thickness by their ability to create a lifting force at an angle of attack changing in a wide range, including the case
where means for control of flow around thin profiles are used.

Methodology of Solution and Formulation of the Problem. As has already been described in detail [8],
multiblock computational technologies have been developed for the purpose of forecasting the behavior of a separated
flow around bodies with vortex cells. Of course, these developments do not claim to be pioneering, because it is very
difficult to come up with ideas that were not tested earlier (in the 1970s–1980s). However, up till now not all of the
progressive ideas have become implemented into computational practice. Among them is the conception of application
of structurized block grids, which has being developed successively by us since the mid-1990s. It should be empha-
sized that the problems on a fluid flow in multiply connected regions formulated in this period generated the approach
to their calculation on the basis of intersecting À-type grids. Thereafter, the developed computational technology in-
volving the superposition of grids of simple topology and different types made it possible not only to consider fairly
complex configurations of bodies composed of a number of elements, but also to determine important, different-scale,
structural features of the flow on specially introduced grids. Besides the solution of two-dimensional problems, the
methodology has been extended to three-dimensional problems.

Initially (see, e.g., [2]), the choice of block computational grids was associated with the need for correct de-
scription of the configuration of a body with vortex cells built into it; polar grids with a constant pitch along the an-
gular coordinate were used for this purpose. This approach was considered as wholly acceptable for a long time, the
more so the multiblock grids (multistage with a different density of the near-wall points) made it possible to pass from
the two-parameter dissipative Launder–Spalding model of turbulence to Menter’s zonal model of shear-stress transfer
[12]. The latter model has been tested in the case of stationary turbulent flows, in particular, in solving problems on
the movement of a low-velocity air flow in rectangular [13] and extending [14] channels with a circular vortex cell on
one of the walls, including the case where a rotating cylinder is located inside the cell. For these problems, physical
experiments have been carried out on a special setup at the Institute of Mechanics of the Moscow State University.
Menter’s model has also been verified when applied to the solution of traditional test problems on a steady turbulent
flow around a circular cylinder with a separating plane in the near wake [15] and an unsteady turbulent flow around
a circular cylinder in a subcritical regime [16]. In the last cases, the calculated forecasts of the surface-pressure distri-
butions (averaged over the period of variations of the transverse-force coefficient in a nonstationary regime) are com-
parable to the experimental data of Roshko [17] and Igarashi [18].

In recent years [8, 19], the multiblock approach was improved with the use of different-scale grids, including
elliptical grids. This is explained in many respects by the desire to correctly describe the very fine features of the
flow, in particular, in the neighborhood of rounded edges. It should be noted that in this case, improvement of the
computational complex does not touch its core — the single-block solver. The latter was formed in the late 1980s
early 1990s [20], and to date its characteristics remain practically unchanged [21]. In its conceptual content the solver
represents an implicit finite-difference algorithm based on splitting by physical processes, which is a variety of the
SIMPLE-like algorithms.

It is significant that the algorithm proposed differs in a number of positions from the traditional analogs [22]
because it reflects the ideas of control of the computational process which are characteristic of the methods of calcu-
lation of compressible potential flows. This, first of all, refers to the designing of a discrete model for the increments
of dependent variables and the application of schemes of approximation of different order for the implicit and explicit
sides of linearized initial equations. It is suggested that the discretization of the implicit side is directly dependent on
the computational stability of the computational algorithm. In this case, the use of coarse schemes makes it possible to
most rapidly smooth out and decrease the level of the increments of the dependent variables. Therefore, in the meth-
odology proposed, the upwind, one-sided differences of the first order of approximation are used for the convective
terms, and in the diffuse terms the transport coefficient is increased by multiplying it into the scheme parameter OTL
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(OTL > 1). The introduction of OTL also makes it possible to successfully smooth out the nonphysical oscillations of
the parameters of a flow at high Reynolds numbers. As a matter of fact, this is the main original characteristic feature
of the algorithm proposed.

The use of Leonard’s quadratic upwind scheme in the explicit side of linearized equations of change in mo-
mentum has long been an approved method of decreasing the influence of the effects of numerical diffusion caused by
errors in the approximation, first of all, of the convective terms of the equations. However, in the traditional SIMPLE-
like algorithms [21, 22], for which the initial equations are usually written relative to the dependent variables them-
selves (but not relative to their increments), the use of Leonard’s scheme leads to complications in the convergence of
the computational process. In this algorithm the quadratic upwind scheme is used everywhere for solution of various
multidimensional stationary and nonstationary problems at a fairly high (of the order of 0.5) relaxation coefficient.

In the case where a centered template is used, the known consistent SIMPLEC procedure of pressure correc-
tion [21, 22], in combination with the Rhie–Chow approach to interpretation of the relation between the fields of ve-
locity and pressure, successfully correlates with the general approach to solution of the transport equations for
increments of the Cartesian velocity components. Moreover, the use of the method of incomplete matrix factorization
for solution of difference equations improves the convergence of the local iterations.

Some comments on calculation of the turbulence characteristics need to be made. As mentioned above, in re-
cent years a change was made from the traditional two-parameter dissipative model of turbulence to the zonal low-
Reynolds model of shear-stress transfer. However, in principle, the turbulence block in the solver has not been
changed significantly, because two partial differential equations representing analogs of the generalized transport equa-
tion are solved for the characteristics of turbulence in both models. On the basis of these equations, the eddy-viscosity
field is recalculated, which is then used for determining the coefficients of diffusion transfer. The discretization of the
convective terms of the transport equations of the turbulence characteristics is performed by the UMIST scheme, which
is a variety of the TVD scheme [16]. The only difference concerns the calculation of the near-wall terms in the equa-
tions of the low-Reynolds model of turbulence, which require the estimation of the distance from the wall.

The computational multiblock algorithm developed [8] is based on the procedure of global iterations, which
has been constructed for solving transport equations by the finite-volume method on structurized intersecting H- and
À-type grids. On the whole, the oblique grids are subdivided into computational and connected meshes. In meshes of
the first type, the flow equations closed by the differential equations of the turbulence characteristics are solved. In the
connected meshes positioned in the near-boundary zones of the computational subregions and in the zones of intersect-
ing of grids, the parameters are determined by means of linear interpolation [19, 23].

The iteration algorithm considered is characterized by the following features: (a) determination of the prelimi-
nary Cartesian velocity components for the frozen fields of eddy viscosity and pressure at the predictor step with sub-
sequent correction of the pressure on the basis of the solution of the continuity equation with corrections for the
velocity field and (b) calculation of the fields of turbulence characteristics and eddy viscosity for the frozen velocity
fields. A computational process is constructed such that to one predictor step correspond several local iteration steps in
the block of pressure correction. The global iterations are completed when the fields of dependent variables converge
with a given acceptable accuracy [16].

In such a way, a computational means for forecasting the characteristics of a turbulent flow around curvilin-
ear, composite objects is formed.

In the present work, a refined numerical investigation, (as compared to [3–6]) of turbulent flow around a thick
profile with four vortex cells — a model of the "Ekip" apparatus — is carried out for the configuration with slightly
rounded sharp-pointed edges (Fig. 1). In this case, the length of the chord of the profile l is taken as the characteristic
dimension, and so the other linear dimensions are expressed in fractions of its length. The angle of attack varies from
−30 to 25o.

The contour of the aerodynamic body is composed of an upper circular arc of radius 0.577 and two lower
circular arcs of radius 0.175, connected by a segment with a coordinate y = −0.0866. The radius of the rounding of
the leading and trailing sharp-pointed edges is taken to be 0.05.

The arc coordinate of the center of the window of the first cell is equal to −0.685. The length of the window
is 0.0834. The elliptical cell (Fig. 1a) with a longitudinal semiaxis ax = 0.0584 and a transverse semiaxis ay = 0.5ax
is built deeper into the contour of the thick profile a distance y0 = 0.7ay. The radius of the rounding of the sharp-
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pointed edge of the cell is 0.001. Bodies of elliptical shape with a longitudinal semiaxis 0.5ax and a transverse
semiaxis 0.25ax are positioned at the centers of the cells.

The other three cells are topologically identical to the first cell. Their arc coordinates are −0.861, 0.992, and
1.107, the dimensions of the windows are 0.0696, 0.0556, and 0.0417, the longitudinal semiaxes are 0.0487, 0.0389,
and 0.0292, and the radii of the roundings of the sharp-pointed edges are 0.00084, 0.00067, and 0.00051, respectively.

The parameters of an undisturbed flow are prescribed at the inlet of the outer boundary of the computational
region. The characteristics of turbulence are formulated just as in [3–6, 15] and correspond to the conditions of physi-
cal experiments performed in wind tunnels. Thus, the turbulence energy at the inlet boundary k∞ corresponds to the
degree of turbulence of the incoming flow (Tu∞ = 1.5%) and the scale of turbulence L∞ is of the order of the char-
acteristic linear dimension of the problem.

The soft boundary conditions (the conditions of continuation of solution) are set at the outlet of the outer
boundary, and the adhesion conditions are set on the surface of the body, including the contours of the vortex cells.

The velocity of distributed uniform suction on the surfaces of the central bodies in the vortex cells Vni is ex-
pressed in fractions of the velocity of the incoming flow U∞ (i is the number of a vortex cell, the index i is omitted
when the velocities of suction in the vortex cells are equal). In this case, Vni = 0.05. The total coefficient of flow rate
cq of the air exhausted via the cells is determined. The considered model of intensification of a vortex flow in a cell
reflects, to a certain extent, the process of intake of air through a porous insert on the basis of its ejection with the
help of a propulsion system.

The velocity of the incoming flow U∞ is also taken as the dimensionless scale.
In the case of suction from the surface of the central bodies in the vortex cells, the additional drag is deter-

mined, as in [6], in terms of the power necessary to maintain the rate of the fluid flow through the central bodies by
analogy with the approach used in [15] for estimating the additional drag of a cylinder with rotating small-diameter
cylinders built into its contour. For the profile with four cells

Cxadd = 4Nq
 ⁄ 


1
2

 ρU∞
3

 l

 = 2 Σpcpicqi .

As a result, we determine the dependence Cx(Vn), where Cx = Cxcal + Cxadd is the drag coefficient of the cylinder with
vortex cells, corrected for the expenditure of energy.

Fig. 1. Scheme of a thick profile in the body-axis system, elliptical shape of a
vortex cell with rounded sharp-pointed edges, built into the thick profile (a),
configuration of the computational region (b), and fragments of the grids posi-
tioned at a large distance from the profile (c), near it (d), inside and over the
vortex cell (e), and near the rounded edges (f).
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Computational Grid and Scheme Parameters. The thick profile is surrounded by a three-stage computa-
tional grid (Fig. 1b–d). The 0.1-thick ring layer adjacent to the contour contains 30 meshes in the transverse direction.
Forty meshes are positioned between the nose of the profile and the first vortex cell, 10 meshes are positioned on the
vortex cells, 10 meshes are positioned between them, and 120 meshes are positioned between the last vortex cell and
the leading edge of the profile. The dimension of the grid pitch near the surface is 0.0001. The second and third ring
layers of thickness 3 and 35 contain 30 and 20 meshes in the radial direction and 160 meshes over the peripheral co-
ordinate. The dimension of the longitudinal pitch near the sharp-pointed edge is 0.01.

Each vortex cell (Fig. 1e) is covered by an individual external grid adjacent to its window. The vertical di-
mensions of all the subregions are 0.05, the number of meshes along the normal to the wall is 30, and the dimension
of the near-wall pitch is 0.0001. The dimensions of the regions in the direction of flow before and behind the vortex
cells are 0.0607, 0.0506, 0.0404, and 0.0304, and the number of meshes found in these spacings is 20 and 15. The
meshes are arranged with a bunching in the neighborhood of the edges. The near-edge pitch is taken to be 0.001.

Inside each vortex cell, a cylindrical grid is constructed with a bunching of points to the walls of the cell and
the central body (the near-wall pitch is 0.0001) and in the regions of the cell adjacent to the sharp-pointed edges (the
minimum pitch is 0.001). Forty meshes are positioned in the radial direction. The region of a vortex cell is divided
along the peripheral coordinate into two subregions bearing up against the lower and upper semiarcs, which are di-
vided into 40 and 20 meshes, respectively.

The neighborhood of the leading and trailing edges (Fig. 1f) of the vortex cells is covered by curvilinear fine
grids. The grids are divided in the longitudinal direction into three regions: from the edge of the cell outward (15
meshes), on the rounding (8 meshes), and from the edge of the cell inward (15 meshes). Fifteen meshes are positioned
with a pitch of 0.0001 along the normal to the surface.

The lower relaxation with coefficients for the velocity (0.5), pressure (0.8), characteristics of turbulence (0.5),
and eddy viscosity (0.35) is introduced at each iteration step for stabilization of the computational process. The value
of OTL is taken to be 2.5 in the solution of the equations of change in momentum and 1.5 in the turbulence block.

Analysis of Results. Some of the results obtained are presented in Figs. 2–6.
The evolution of the patterns of flow around the thick profile, presented in Fig. 2, demonstrates the transfor-

mation of the large-scale vortex structures with increase in the angle of attack from −30 to 25o. Several typical situ-
ations can be separated.

Fig. 2. Pattern of flow around a profile with active vortex cells (the velocity
of suction from the central bodies is equal to 0.05) at Re = 105 and angles of
attack α equal to −30o (a), −25o (b), −17.5o (c), −16.5o (d), −10o (e), −5o (f),
0o (g), 5o (h), 10o (i), 15o (j), 20o (k), and 25o (l).

881



A zone of circulation flow, consisting of a pair of vortices, is formed under the bottom of the profile when
α changes from −30 to −17.5o. The flow separates from the profile in the neighborhood of the leading and trailing
extremities at the sites of rounding of the sharp-pointed edges. The stagnation point of the flow (see Fig. 5) is posi-
tioned on the upper generatrix of the contour around which air flows. The flow around the convex part of the profile
is unseparated.

The pattern of the flow under the profile bottom changes abruptly when α increases from −17.5 to −16.5o; in
this case, the separation point displaces suddenly from the nose extremity of the profile to the stern. Hereinafter, until
the angle of attack is equal to 10o, the flow around the thick profile is practically unseparated, not counting the small
zone of circulation flow in the stern part which is formed because of the nonperfection of the chosen aerodynamic
shape of the profile. It is interesting to note that, in this case, the leading stagnation point moves smoothly from the
upper generatrix of the contour (the part of the circle) to the bottom of the profile (the linear segment).

And, finally, a separation zone begins to form in the stern part of the profile in the neighborhood of the
upper generatrix when the angle of attack changes from 15 to 25o. The reason for its appearance is the deterioration
of the normal operation of the vortex cells at large α. As indicated above, the chosen velocity of suction in the vortex
cells is quite sufficient to provide an unseparated regime of flow around a thick profile only at zero angle of attack.
It should be noted that even in the preliminary investigations carried out at a moderate Reynolds number (Re = 104)
it has been established that the back vortex cells cannot always cope with the separation of the flow from the curvi-
linear wall. Therefore, of interest is a detailed analysis of the pattern of flow in the tail part of a thick profile, pre-
sented in Fig. 3.

The point of separation of the flow on the upper generatrix of the contour around which air flows remains
practically unchanged in the wide range of angles of attack from −30 to 5o. At the same time, at the bottom, separa-
tion occurs first in the front part of the profile and then, beginning with α = −16.5o, moves to the stern part. At an

Fig. 3. Pattern of flow around the tail part of the profile. Notation is the same
as in Fig. 2.
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angle of attack equal to 10o the separation point moves upstream and approaches the back vortex cell. An analysis of
the vortex structures, presented in Fig. 3j–l, shows that the vortex cells get out of order successively, beginning with
the back cell (which is the fourth in succession), when the angle of attack increases. Thus, the given velocity of suc-
tion from the surface of the central bodies, equal to 0.05, is insufficient to provide an unseparated regime of flow
around the profile. As a result, at α = 25o, only one (the first) vortex cell of the four cells functions in the system of
control of flow around the thick profile.

The failure of the vortex cells influences first of all the lifting force of the thick profile (Fig. 4a), gradually
decreasing Cy when α increases from 15 to 25o. In principle, the above-indicated movement of the separation point
upstream from the back extremity of the upper contour (Fig. 3i) is evidence of the inability of the system of control
of the flow to cope with the separation of the flow in the stern part; in this case, Cy(α) achieves a maximum value
close to 2.75. At all the other angles of attack, Cy increases monotonically, except for the jump-like decrease at α ≈
−17o, which corresponds to a sudden displacement of the separation point at the bottom of the profile.

It is interesting to note that there are opposite tendencies in the behavior of Cy(α) for the profile itself and a
set of vortex cells. The force load (curve 2) measured for the contour (without regard for the vortex cells) practically
copies Cy(α) for the object considered.

As has been shown earlier [5], vortex cells built into the contour of a body around which air flows are gen-
erators of circulation (this phenomenon was interpreted as a supercirculation effect) which give rise to a significant
lifting force. This means that the lifting force of an unseparated flow around a thick profile with vortex cells is much

Fig. 4. Dependence of the force integral characteristics of the thick profile with
vortex cells on the angle of attack α: a) lift coefficient, b) drag, c) lift coeffi-
cient of the set of vortex cells and of each individual vortex cell, and d) lift-
to-drag ratio [1) for the profile with vortex cells (with regard for the expen-
diture of energy), 2) for the profile without vortex cells; 3) for the set of vor-
tex cells, 4) forecasted values of the drag coefficient, 5) coefficient of addi-
tional drag caused by the expenditure of energy, and 6, 7, 8, 9) for the first,
second, third, and fourth vortex cells, respectively].
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greater (by 20–30%) than the lifting force of an unseparated flow around a smooth contour. The efficiency of vortex
cells to reproduce the lifting force decreases with increase in the angle of attack, even though not very significantly.
It is interesting to note that the transformation of the pattern of flow around the profile at α C −17o influences the cir-
culatory motion of air inside the vortex cells, causing a small jump-like change in the force characteristics (curve 3 in
Fig. 4a).

As follows from Fig. 4b, the calculated drag coefficient Cxcal (curve 4) determined by the surface distributions
of the static pressure has a minimum at a negative angle of attack in the range from −20 to −15o, in which the pattern
of a separated flow transforms. It should be emphasized that the value of this minimum is very close to zero. A sub-
sequent increase in α to 0o is accompanied by a small increase in Cxcal — approximately to 0.06. At α > 0o the drag
begins to increase rapidly; however after α = 15o the rate of increase sharply decreases and Cxcal becomes minimum
at α = 25o.

The described behavior of Cxcal(α) can be explained on the basis of analysis of its components: the drag of
the smooth profile itself (without cells, curve 2) and the total drag of the vortex cells (curve 3). It is significant that
in the fairly wide range of angles of attack from −20 to −15o, Cx of the smooth profile is negative, i.e., a driving
force acts on the profile around which air flows in an unseparated regime. It reaches its largest value, equal to
−0.17, at α = 2o. Of course, the driving force is completely compensated by the drag of the vortex cells. The total
drag of the vortex cells Cx increases from 0 to approximately 0.25 when the angle of attack changes from −30 to 5o.
After the small "shell," at α > 15o Cx begins to decrease sharply. Thus, the traditional increase in the drag of the pro-
file with increase in α is caused by the increase in the contribution of the smooth contour of the body to Cx at large
angles of attack.

An estimation of the additional drag caused by the expenditure of energy for suction of air from the surface
of the central bodies in the vortex cells has shown that its dependence on the angle of attack is qualitatively similar
to Cy(α) of the vortex cells. Only the jump-like change in Cxadd as a result of the transformation of the separated flow
around the thick profile is even less marked. In a wide range of α (approximately to 10o), the additional drag of the
profile changes insignificantly and its level is of the same order as the calculated drag of the thick profile with vortex
cells at α = 0o. At larger angles of attack the contribution of the additional drag to the total drag of the body de-
creases even though the total drag of the profile is high at the indicated angles of attack.

Thus, in the case where the angle of attack increases, the total drag resistance of the thick profile with active
vortex cells (curve 1) is very close in behavior to the drag calculated by the distribution of the surface pressure (curve
4). The minimum value of the drag coefficient of the body was found to be equal to 0.08. It should be noted that the
total drag determined with regard for the expenditure of energy has a local maximum at α = 20o, i.e., the thick profile
with a system of control of flow around it differs from the traditional profiles.

The behavior of Cy of the vortex cells on change in α is shown in detail in Fig. 4c, taking into account the
contribution of each cell. Whereas the first vortex cell generates a lifting force progressing with increase in the angle
of attack, the contribution of the other cells decreases monotonically. As mentioned above, the last three cells fail at
large α, with the result that the lifting force practically disappears. It is interesting that at α = 0o the total lift coeffi-
cient has a local maximum (Cy = 0.53) that does not coincide with the local maxima of the individual vortex cells.
And, of course, the contribution of the first cell to the formation of the total lifting force is predominant, especially at
positive angles of attack.

An estimation of the lift-to-drag ratio of the thick profile with vortex cells has revealed two local maxima,
equal to 17.5. One of them is multivalued because it falls in the range of negative angles of attack, in which a sepa-
rated flow is transformed. The second maximum corresponds to the neighborhood of small positive angles of attack
(2o). The local minima of the lift-to-drag ratio, having a value of the order of 12.5, are realized at negative angles of
attack lying in the range from −17.5 to −10o. It should be noted that a fairly large lift-to-drag ratio of the thick profile
in the range from 12.5 to 17.5 is attained in the wide range of angles of attack from −23 to 10o.

The level of the lift coefficient Cy > 1 attained for the thick profile in the considered range of angles of attack
from −30 to 25o should be considered as the most important of the results presented in Fig. 4. Since this result seems
somewhat unexpected, especially in the region of negative α, the evolution of the profiles of the surface pressure with
increase in the angle of attack is analyzed in Fig. 5.
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Actually, as follows from Fig. 1a–c, at larger negative angles of attack a developed separation zone is formed
under the bottom of the thick profile. Consequently, a zone of decreased pressure is formed at the bottom. Moreover,
the flow runs on the profile from above and so a zone of increased pressure is formed in the front part of the upper
generatrix of the contour of the body. The indicated surface loads must generate a negative lifting force. At the same
time, it follows from Fig. 4 that the lift coefficient of the profile itself without vortex cells comprises 0.4–0.6 in this
range of α. Such positive values of Cy are realized due to the predominant contribution of the zone of very high nega-
tive pressure on the back of the upper generatrix of the contour to the lifting force. The force arising in this case not
only compensates the above-indicated negative lifting force, but also forms Cy on the profile, which is of the same
order as the total lift in the vortex cells.

It is interesting to analyze the reasons for the jump-like change in Cy of the profile without vortex cells in
the case shown in Fig. 5c, d. The movement of the separation point from the front part of the contour to the back
part and the actual attachment of the flow to the bottom increase the discharge in the nose part of the bottom and
simultaneously increase the pressure in the stern part. But the main reason is a significant decrease in the level of dis-
charge on the back surface of the contour.

As mentioned above, as the angle of attack becomes larger than −16.5o, the zone of increased pressure corre-
sponding to the front stagnation point moves from the upper part of the contour to the bottom, aiding in increasing
Cy. In this case, the zone of decreased pressure in the front part of the bottom disappears and is replaced by a wide
region of increased pressure which extends throughout the length of the bottom (which also stimulates Cy to increase).
By the way, the indicated region represents a zone with an approximately constant pressure gradient. True, at negative
α the flow in the neighborhood of the bottom decelerates under the action of the positive pressure gradient, and at
positive α the flow under the profile, on the contrary, accelerates in the zone with a negative pressure gradient.

The upper part of the contour becomes a powerful generator of the lifting force when the angle of attack in-
creases. The progressing discharge in the front part of the contour decelerates slightly at large angles of attack.

At large α, the flow in the back part of the profile re-forms, with the result that the discharge decreases. It
is apparent that the failure of vortex cells is accompanied by an increase in the pressure in the zones of their dispo-
sition and, consequently, a decrease in the lifting force of the profile.

Figure 6 combines the results of the methodical experiments for thick profiles close in geometry with vortex
cells and the data of the comparative analysis of flows around thick and thin profiles, including the case where there
is a system of control of their circulation.

The aim of the methodical experiment is to estimate the degree of adequacy of the numerical forecasts of the
characteristics of a flow around a thick profile with vortex cells. This aim is attained by comparing the data on Cy(Re)
for the profile with cells and for the profile itself (without cells), taken from [5] and [8]. As follows from Fig. 6a, at

Fig. 5. Diagrams of the surface pressure for the profile with active vortex cells
at different angles of attack α (without regard for the walls of the vortex cells,
around which air flows). Notation is the same as in Fig. 2.
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Re = 105 the results of the present work are in good agreement with the data obtained at the same level of the control
action. This can be considered to a certain extent as evidence of their adequacy and the acceptability of the computa-
tional complex for forecasting the characteristics of thick profiles with active vortex cells.

The present numerical investigation would undoubtedly be incomplete if it did not include a comparison of
data on the characteristics of thick and thin profiles. For this purpose, we used the experimental data of [24] for the
Zhukovskii thin profile (of thickness 0.14) in the standard variant and a profile equipped with a system of control of
flow in the form of a rotating cylinder positioned in the front part of the profile. The Reynolds number was selected
to be 4.62⋅104. By varying the rotational velocity Vt measured on the surface of the cylinder, the effect of adhesion of
the flow to the upper generatrix of the profile positioned at an angle of attack (α = 20o in [24]) is attained (at high
Vt of the order of 4).

A comparative analysis of the results presented in Fig. 6b shows that a thick profile with active vortex cells
has the indubitable advantage as a generator of the lifting force. It is significant that for symmetric thin smooth pro-
files, Cy is limited by the value of the order of unity. Moreover, at negative α Cy < 0, which is not always useful in
applications. Even though a rotating cylinder positioned in the nose of a thin profile significantly increases the lift co-
efficient, the profile must be set at large angles of attack in order that the lifting force be realized. It has been estab-
lished in experiments [24] that the cylinder must rotate with a high velocity (of the order of 4) to provide an
unseparated regime of flow around the profile, which calls into question the economical expediency of this method of
control.

Thus, at zero angles of attack the aerodynamic characteristics of a thick profile with active vortex cells differ
greatly from the analogous characteristics of the traditional profiles, which makes it possible to significantly widen the
field of their application.

The authors are grateful to Yu. M. Lipnitskii for useful discussion of the problem.
This work was carried out with financial support from the Russian Foundation for Basic Research (projects

02-01-00670, 02-02-81035, and 02-01-01160).

NOTATION

x, y, Cartesian coordinates in the body-axis system, fractions of the chord; α, angle of attack, deg; s, coordi-
nate measured along the contour of the cylinder, fractions of the chord; ρ, density of fluid, kg/m3; U∞, velocity of an

Fig. 6. Comparative analysis of Cy for thick profiles close in geometry with
vortex cells at different values of Re (a) and for thick and thin profiles, in-
cluding the case where a rotating cylinder is built into their nose part, at vary-
ing α and a fixed Re (b) equal to 105 for the thick profile and 4.62⋅104 for
the thin profile. The numbered curves correspond to the thick profiles close in
geometry with vortex cells (1, 3, 5), the profiles without vortex cells (2, 4, 6),
the Zhukovskii profile with a built-in cylinder rotating with a velocity Vt = 0
(7), 1 (8), 2 (9), and 4 (10), and the Zhukovskii profile itself (11).
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undisturbed flow, m/sec; l, length of the chord, m; µ, dynamic coefficient of viscosity, kg/(m⋅sec); k, energy of turbu-
lent pulsations, fractions of U∞

2 ; ω, specific rate of turbulence dissipation, dimensionless; L, scale of turbulence, frac-
tions of l; Tu, degree of turbulence of the flow, fractions of U∞; Re = ρUl ⁄ µ, Reynolds number; ax, ay, dimensions
of the semiaxes of the elliptical vortex cell, fractions of l; y0, coordinates of the central cell, fractions of l; bx, by, di-
mensions of the semiaxes of the elliptical central body, fractions of l; Vn, velocity of suction from the surface of the
central body, fractions of U∞; Vt, rotational velocity on the surface of the central body, fractions of U∞; Cp, pressure
coefficient; Cxcal, drag coefficient; Cxadd, coefficient of additional drag caused by the expenditure of energy for the
maintenance of suction from the surface of the central bodies; Cx, drag coefficient corrected with regard for the ex-
penditure of energy; Cy, lift coefficient; K = Cy

 ⁄ Cx, lift-to-drag ratio; Nq, power necessary to maintain suction from
the surface of the central body in the cell, kg⋅m/sec3; cq, flow rate through the surface of the central body, fractions
of U∞l; pm, mean static pressure (related to the double kinetic head ρU∞

2 ) on the surface of the central body in the
cell. Subscripts: i, number of a vortex cell; ∞, parameters of the incoming flow; n, normal; t, tangential; cal, calcu-
lated; add, additional; m, mean.
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